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A procedure for studying some retarded systems with time-dependent parameters is proposed and the stability conditions for 
such systems are established. 

Lyapunov's second method, which was developed for systems with finite delay [1], is one of the basic techniques 
for studying the stability of retarded systems. Many papers, for example, [2-9] and references therein, have been 
devoted to further :modifications of  this method and its applications. In a number of  these papers coefficient 
conditions for stability have been obtained for specific retarded systems by constructing suitable Lyapunov 
functionals. However, the difficulties which had to be overcome made various authors compare the construction 
of t h e ~  functionals to an art [2]. 

Along with this, if the delay is set to zero in the functionals constructed, one obtains the Lyapunov function for 
the corresponding ordinary differential equation. In other words, every Lyapunov functional for a retarded system 
is generated by the Lyapunov function of an ordinary differential equation constructed in the appropriate way. 
This observation was used in [10], where a formal procedure for constructing Lyapunov functionals Vfor stationary 
systems with arbitrmy (concentrated or distributed) delay was put forward. The procedure consists of the following 
steps: 

1. transform the right-hand side of the equation in question so as to represent it as the sum of two terms, the 
first of which depends only on the current state of the system; 

2. discard all but the first term of the transformed equation, resulting in an auxiliary ordinary differential equation, 
whose trivial solution is assumed to be asymptotically stable; 

3. for the auxiliary system, determine the Lyapunov function V (i.e. a positive definite function, whose derivative 
is negative definite by virtue of the auxiliary system), the existence of which follows from the assumptions of step (2); 

4. replace the arg~Jments of Vby the functionals depending on the transformation used in (1); as a result, one 
obtains the main component V1 of V; by adding to V1 a component V2 obtained in the standard way, we obtain the 
desired functional V of the form V = V1 + V2, which satisfies the conditions of the theorem on asymptotic stability. 

The transformations in (1) and the choice of the Lyapunov function in (3) can, in general, be realized in many 
ways. This lack of mziqueness can be explained to construct different functionals V and, consequently, to obtain 
different stability conditions. 

We remark that tbe functionals constructed earlier in [4, 5] are within the framework of the formal procedure 
presented for studyi~g the stability of retarded systems. 

The p u ~  of the: present paper is to obtain stability conditions and to demonstrate that the procedure descnl~ed 
is also applicable to a number of systems with variable coefficients of the form 

Jc(t)=a(t, xt), t ~ O, xERn, a(t,O)..O (0.I) 

Here x, = x( t  + 0), E) <~ 0 and a(t, .): [0, oo] x C(-~ ,  0] --> R ~. 
The initial conditions for (1.1) are defined by 

xo(o) = ~(e), ~o e c ( - -~ ,  o] (0.2) 

Below we conside~r the stability of the trivial solution of a problem of the form (0.1), (0.2), which is said to be: 
1. stable ff for an), ¢ > 0 a quantity 8(e) > 0 exists such that x(t) [ < e for t ~> 0 ff IIq~[ < 6(¢); 
2. asymptotically sltable if it is stable and Ix(t) I --> 0 as t --> ~ for all initial conditions ¢p belonging to some attraction 

domain of the trivial solution. 
We will first consider in detail a scalar linear equation with discrete delay as an illustration of the procedure. 

As regards other cla~k~es of equations, we shall confine ourselves to presenting the results of the various stages of 
the procedure, to the form of the resulting functionals, and to the stability conditions. For convenience, we shall 
consider only simple characteristic cases. Nevertheless, the results presented show clearly what changes need to 
be made in order to cover a more general situation. 
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1. SCALAR EQUATIONS 

Consider the stability of the scalar equation 

Y¢ (t) = -b(t)x(t  - h), t >-- 0 (1.1) 

where h >I 0 is a given constant and b(t) is a given bounded continuous function. We transform the 
right-hand side of (1.1), separating the term which depends on x(t) 

b ( t ) x ( t - h ) = b ( t + h ) x ( t )  - d  i b ( s+h)x ( s )ds  (1.2) 
a t  t - h  

We substitute (1.2) into (1.1) and transfer all the terms containing the t-derivative to the left-hand side. 
Then the transformed equation can be represented in the form 

t 

2(t)=-b(t + h)x(t), t~>0, z(t)= x(t)- ~ b(s + h)x(s)ds (1.3) 
t-h 

Discarding the term that contains retarded values of the solution in (1.3), we obtain the auxiliary ordinary 
equation 

~(t) = -b( t  + h)y(t), t >~ 0 (1.4) 

We assume that 

inftb(t) > O, t > 0 (1.5) 

Then (1.4) is uniformly (with respect to the initial instant) asymptotically stable. As the Lyapunov 
function v(t, y)  for (1.4) we take v = y2. Now, we form the component V1 of V. The functional V1 is 
always obtained by replacing y by z in v(t, y), z being the functional under the derivative sign on the 
left-hand side of the transformed equation. 

In the case under consideration we find, on the basis of (1.3), that 

ix.,: 1 V I (t, x,) = b(s + h)x(s)ds (1.6) 
h 

Now we choose V2 in such a way that the complete derivative l:of V = V1 + V2 is negative definite by (1.1). 
Taking (1.2) into account, we conclude that the derivative V1 of (1.6) is, by (1.1), equal to 

t 

(t) = -2z(t)b(t + h)x(t) = -2b(t + h)x 2 (t) + 2b(t + h)x(t) ~ b(x + h)x(s)ds 
t-h 

Besides 

t t t 

2x(t) I b(s + h)x(s) ds<" X2(t) ~ b(s + h)ds + I b(s + h)x2(s) ds 
t - h  t - h  t - h  

Therefore, the functional 

(1.7) 

t t 

V 2 = ~ b(s + 2h)daJ b(s I + h)x 2 (s I )ds I (1.8) 
t - h  s 

must be taken as V2. By (1.6)-(1.8), we have 

t+2h 

~' ~ - x  2 (t)b(t  + h)[2 - ~ b(s)ds] (1.9) 
t 

for the derivative Vof V = V1 + V2. From (1.5) and (1.9) it follows that ~" is positive definite under the 
condition 
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t+h 
sup, ~ b(s)ds < 1, t ~ 0 (1.10) 

t 

Now, a standard argument (see, for example, [4]) shows that (1.4) is asymptotically stable for any 
continuous funetiion b(t)  that satisfies (1.5) and (1.10). 

Using other transformations of the fight-hand side of (1.1), we can obtain other stability conditions. 
For example, consider the following equation (valid for t ~> h under the assumption that b(s)  is a con- 
tinuously differentiable function) 

b(it)x(t - h) -- b(t + h ) x ( t ) -  
t 

I 
t-h 

[ [ K s + h ) x ( s ) - b ( s + h ) b ( s ) x ( s - h ) ] d s ,  t ~  h (1.11) 

By (1.1) and (1.11t), we conclude that the auxiliary system has the previous form (1.4). This means that, 
when (1.5) holds, v( t ,y)  = y~, i.e. I:1 = x2(t), since in this case z( t )  = x(t)  by (1.11). Computing 121 from 
(1.1) and taking (1.11) into account, we have 

! 

(t) = - 2 b ( t  + h)x  2 (t) + 2x(t) ~ [/~(s + h ) x ( s ) -  b(s + h)b(s )x(s  - h)lds 
t-h 

I t 
~< x2(t) - 2 b ( t  + h ) +  J [Ib(s+h)l+b(s+h)b(s)]ds + 

t-h 

t 

+ J [Ib(s + h)lx 2 (x)  + b(s + h)b(s)x  2 (s - h)lds (1.12) 
,,-h 

It follows that to ensure that V, where V = I:1 + 1:2, is negative d e l e t e ,  it suffices to take V2 to be 

t t t 

V2 = I dxl [ l [ K s + h ) l x 2 ( s ) + b ( s + h ) b ( s ) x 2 ( s - h ) ]  d s + h  I b ( s + 2 h ) b ( s + h ) x 2 ( s )  ds (1.13) 
t-h I t-h 

Indeed, (1.12) and (1.13) imply that 

~'(t) ~ ~l(t)x2 (t), 
¢ 

~(t) = [-2b(t + h) + hliKt + h)l + hb(t  + 2h)b( t  + h) + I (I/~(s + h) + b(s + h)b(s))ds] 
t-h 

It follows that (1.1) is asymptotically stable for any continuously differentiable function b(t)  satisfying 
(1.5) such that 

suptT(t) < 0, t ~ 0 

Remark. As has been mentioned above, (1.1) is considered purely for simplicity. Minor modifications enable 
stability conditions :Eor more general equations to be obtained using the same procedure. As an example, we consider 
the following seal~vr equation with variable delay 

m 

.~(t)=-Y~ a i ( t ) x ( t - X i ( t ) )  , t ~ O  (1.14) 
i=1 

The transformed Erstem has the form 
m 

~ ( t ) = - b ( t ) x ( t ) ,  b( t )=  • ai(qi( t ) )qi ( t  ) 
i=l 

Z(t) = x ( t )  - ~, qi}t)a i (s )x(s  - Zi (s))ds 
i=1 t 

where qi(t) is the inverse function to t -  x~t). This means that the auxiliary system can be described by the equation 
)( t)  = -b(t)y(t) with Lyapunov's function v ffi y2. Consequently, V ffi 1:1 + I"2, where 

qi(t) qi(t). 
V 1 =z2(t), V2= ~ ~ b(s)ds ~ lai(sl)lx2(si-xi(s))dsl 

i=1 t s 
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Using V, it can be established that (1.14) is asymptotically stable if ai(t) are bounded and continuous, ~i(t) are 
continuously differentiable, and 

suPt i i ( t )< l ,  sup, ~ qi~t)lai(s)ds<l, t>~O 
i=l t 

supt [-2b(t) + ~, qi}t)(lai (s)b(t)l+lb i (s)a i (qi (t))qi (t)lds] < 0 
i=l t 

2. S E C O N D - O R D E R  EQUATIONS 

We shall establish stability conditions for the system 

/c m ( t)  = x 2 (t), x2 (t)  = - a ( t ) x  2 ( t)  - b ( t ) x  I (t - x(t)), t/> 0 (2.1) 

The transformed system has the form 

t 

~l( t )  = x2(t) ,  ~ 2 ( t ) = - a ( t ) x 2 ( t  ) - b ( t ) x l ( t ) + b ( t )  ~ x2(s )ds  
t - ' c ( t )  

It follows that the auxiliary system can be described by 

Yl (t) = y2(t), y2(t) = -a ( t )y  2(t)-  b( t )y  l ( t )  

For this system, we take v to be v =/~1 + ~2. Therefore Va = ~ + ~2. 
This means that, by (2.1) 1/1 satisfies the estimate 

t 

V I <<- b ( t ) x ? ( t ) - 2 a ( t ) x 2 ( t ) + b ( t ) z ( t ) x 2 ( t ) + b ( t )  ~ x~(s )ds  
t - ~ ( t )  

It follows that 

(2.2) 

q ( t )  t 

V2 = ~ b(s )ds  ~ x~ (s I)ds I (2.3) 
t s - X ( s )  

where q(t )  is the inverse function to t - x(t).  Taking (2.3) for V = V1 + V2, we have 
q( t )  

¢ <~ b(t)X21 ( t )  + Yix2t, Yl = [-2a(t)+ b( t )x ( t )  + ~ b(s)ds] 
t 

Therefore, using the transformed system (2.2) we can conclude that (2.1) is stable if b(t) ,  x(t)  >~ 0 are 
continuously differentiable functions, a(t )  is continuous, and 

inf tb(t)>O, /~(t)~<O, ~(t)<l,  Yl(t)<~O, t~>O (2.4) 

We now take the transformed system in the form 

Jfi (t) = x 2 (t), z2 (t) = -a ( t )x  I ( t ) -  a ( t ) x  2 ( t)  

q ( t )  . 

Z(t) = x2(t)-  S b(S)~l ( s -  z (s ) )ds ,  ix(t) = b(q( t ) ) ( l ( t  ) 
I 

Then the amdliary system can be described by 

Jq ( t )  = x 2 (t), Jc 2 (t)  = - t z ( t ) x  I ( t)  - a ( t ) x  2 ( t )  

(2.5) 

We take v in the form 

v = 2 a y  2 + (o~y ! + y2)a + y2 

Thus, taking (2.5) into account 



The stability of certain retarded systems with variable coefficients 69 

V 1 = 20tx 2 (t) + z 2 (t) + [Z(t) + ax] (0] 2 (2.6) 

By (2.1), we have 

~ = [Ct(t) + a(t)(it(t) - o~(t))]xl 2 (t) - a(t)x 2 (t) + ¢i(t)x I (t)x 2 (t) + 

+[(2o~(t) - i~(t))x I (t) + a(t)x 2 (t)]'tft)b(s)xl (s - "c(s))ds 
I 

for I;'1. It follows that 

q(t) q(t) 
V 2 = ~ [ 20c(s) - ;i(s) + a(s)]ds ~ b(s I )x I (s I - x(s I ))ds I 

t t 

(2.7) 

Hence, (2.6) and (2.7) imply that 

Here 

(2.8) 

T3 = 2 ( 6 t  + a ( a  - ¢ x ) ) + [ 2 c z  - alq ')b(s)ds + cxq  '>(12cx(s)- a(s)l+l, l + 
t t 

q(t) 
Y2 = -2a  + a I b(s)ds+[fi[ 

t 

The relationships (2.6)--(2.8) demomtrate that (2.1) is ~ 'mptot ical ly  stable ifdi, b, ~, ~ are cont inuo~ 
functions and 

a(t)>~O, suPt~,i(t)<O, i=2,3,  supt~( t )<l ,  inftot(t)>O, t~>O 

Note that the two groups of stability conditions for (2.1) established in this section depend not only 
on the coefficient,,;, but also on their derivatives. 

Remark. The above procedure for comtru~ing the functionals can be applied not just to linear, but also to some 
non-linear equations. For example, consider the system 

5q (t) = x 2 (t). k 2 (t) = -a(t)x 2 (t)- b(t) F(x t (t -'t(t))) (2.9) 

The function F(x) ia. continuously differentiable, xF(x) > 0 for x # 0, and/(x) = 8F(x)fd~ is bounded: I/Ix) I < 1. 
Theremainlngpararaetersin(2.9)arethesameasin(2.1).We.~hsllconstructV=V1 + V2 for (2.9). The tramformed 
system has the form 

t 

:~] (t)=x2(t), ::2(t)=-a(t)x2(t)-b(t)F(xl(t))+b(t) ~ f(xl(s))x2(s)ds 
t-~(t) 

This means that the auxiliary system of equations has the form 

9 = Y2, Y2 (t) = -ay 2 -bF(y I ) (2.10) 

We take v for (2.10) to be [11] 

2 Yl 
v(t,yl ,Y2 ) = Y2 + 2b(t) ~ F(s)ds 

0 

Then VI -- v(t, xl, x2). The functional defined by (2.3) should therefore be taken as V2. As a result, we find that I;" 
satisfies the estimate 

xi(t) 
P'<~ 2/~(t) I F(s)ds+'{ix2(t) 

0 

by (2.9). It follows that (2.9) is stable under the assumptions made above if conditions (2.4) are satisfied. 
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3. S Y S T E M S  W I T H  D I S T R I B U T E D  D E L A Y  

We shall apply the procedure described to the system of equations 

)l 

A(t) = ~ K(t, s ) x ( t -  s)ds, t >! O, x ~ R n (3.1) 
0 

Here  K is an n x n-matrix with continuous elements. When t ~> h, the transformed system has the form 

h t h h 

x ( t ) = A ( t ) x ( t ) + I K ( t , s ) d s  f d~IK(z ,  s l ) x ( t - s t ) d s l ,  A ( t ) = I K ( t , s ) d s ,  t>~O (3.2) 
0 t - s  0 0 

The auxiliary system can be described by the equation 

f ( t ) = A ( t ) y ( t ) ,  t>~O (3.3) 

We assume thatA(t)  is a continuously differentiable matrix, [A(t)[ ~< C 1 ,  and Re 2t(A(t)) ~< -C2 < 0 
for all t ~ 0. Here  and henceforth Ci are positive constants, IA I is the matrix norm of A generated by 
the Euclidean vector norm in R n, and, finally, L(A) are the eigenvalues of A, Re 7~ being their positive 
parts. Under  these assumptions, a unique positive definite matrix P(t) exists which is a solution of the 
equat ionA'( t )P( t )  + P(t)A(t)  = - I  for every t I> 0, where the prime denotes transposition and I is the 
identity matrix. The matrix P(t) satisfies the conditions [12-14] 

IPI  C31AI, IPI  c4, 9(t,y)=y'P(t)y 

C 3 <~ 2.~/-nl[A(t)~A(t)]-ll 2, C 4 ~ ~/-nlA'(t)~A'(t)]-ll  (3.4) 

f,( t, y ) = d / dtt y' P( t ) y l = -lyl 2 + y' Py 

Here fi is the total derivative of v by virtue of (3.3) and • denotes the Kronecker sum of the matrices 
A. By (3.2) and (3.3), we have 

v t = x ' ( t )P( t )x( t )  (3.5) 

By virtue of  (3.2), computing ~ we conclude using (3.3) that V 2 should be chosen in the form 

h t h 

V2 = C 4 I d s  i d'cI Ilg(xl + s,s)ldx2IIg(x2,sl)llx(x2 -sl)12 ds, + 
o t - s  x I o 

h t h x+s 

+C4Ids I [lds  $ IK(x, +s,,sl)ld'qllg('c+s,s)llx('OI2dx 
0 t - s  0 ~ + s - s  1 

Then for V = 1/1 + V2 we have 

¢ -'¢41xl 2, T 4  = 1 - l / ~  - C4Q 
h h t+s h h (3.6) 

Q= ldsldsl I Ig(xl + s~,sl)llK(t + s,s)ldxi + I lg(t ,s) lds i dx[lK(x,s ,  )lds~ 
0 0 t+s - s  I 0 t - s  0 

It follows that (3.1) is asymptotically stable i fA( t )  satisfies the above conditions for ird~T4(t ) > 0 for t I> 0. 
The condition T4 > 0 means that the moments of the kernel K and the rate of  change of A(t) must 

be small enough. 
The stability conditions can be simplified f o r N  = 1. In this ease the transformed and auxiliary systems 

will retain the previous form (3.2) and (3.3). We set v =)2.  Then V1 = x2(t). This means that V2 is given 
by (3.6) with (74 = 1. It follows that (3.1) is asymptotically stable for n = 1 if 

suPt[2A(t)+ Q(t)] < 0, t I> 0 

As before, using a transformation formula other than (3.2), one can obtain other stability conditions. 
Let us state some them, confining ourselves to the case n = 1 for simplicity. We write the transformed 
system as follows: 
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h h t 

~.(t)::Al(t)x(t), A l ( t ) f I K ( t + s , s ) d s ,  z ( t ) = x ( t ) + l d s  J K(x+s,s)x(x)dx (3.7) 
0 0 t - s  

It follows from (3.7) that the auxiliary system has the form (3_3) withA replaced byA1. We assume that 
A 1 ~< 0. Then v. = y2, i.e. Vl = z2(t). 

Computing 1/1 by (3.1), we conclude that 

h t h 
V2 = [. ds I lA(s~ + s)ldSl J'IK(~ + s, s)Ix 2 (x)dx (3.8) 

0 t - s  s 1 

It follows that the asymptotic stability conditions for (3.1) have the form 
h h 

sup,[2A~(t)+lAl(t)ll ds i IK(x + s,s)ld't + IlK(t + s,s)lds i [AI(Sl + s)ldsl] < 0, t ~> 0 I''J N~ 
o ,-~ o ,-~ to . , )  

h t 

sup, I ds I IK(x + s,s)ldx < 1 
0 t - s  

Remarks. 1 Minor modifications of the original assumptions about K(t, s) concerned with the eTfistence and 
finiteness of improper integrals also make it possible to cover the case of infinite delay (i.e. the case h ffi oo). For 
example, the asymptotic stability conditions for (3.1) for h = oo and n ffi 1 will retain the previous form (3.9) with 
h replaced by o o  if 

/T/7 sup, ~ds IK(s  I +$+$2,$2) lds2)dSl  [ IK(x+s,s)lax<** 
0 \t-s\O s I 

For the scalar equation 

Jc(t) =-a(t)x(t)+ TK(t,s)x(t-s)ds, t ~ 0 
0 

where a(t) and K(t, :~) are continuous functions, the stability conditions have the form 

0 t - s  

(3.1o) 

(3.11) 

supt[-2a(t)+ ~ IK(t,s)l+lK(t + s,s)llds <O, t ~ 0 
0 

Indeed, since the ri$~t-hand side of (3.10) already contains a term determined by the current state of the system, 
the auxiliary system has the form 

Therefore 

= -ay, i.e. v = y2, V! = x 2 (t) 

0 t - s  

Under conditions (3.11) the functional V = V1 + Ve satisfies the conditions of the theorem on asymptotic 
stability. 

2 For certain Volterra-type equations with distributed delay the transformed equation can be obtained by 
differentiating both sides of the original equation. For example, we consider the scalar equation 

t 
k(t) = -ax( t ) -  J K( t -  s)x(s)ds, t >~ 0 (3.12) 

0 

with initial condition x(0) = ~ .  Here a is a given constant and K(s) is a continuously differentiable function. 
Equation (3.12) is a special case of (3.10). Therefore the stability conditions for this equation follow from (3.11) 

and have the form 

o 0 

However, these stability conditions, which require the kernel K(s) to be absolutely integrable in [0, •) and the first 
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moment to be finite, may turn out to be too restrictive for some equations. We shall therefore establish stability 
conditions using another representation for the transformed equations. 

Differentiating both sides of (3.12) with respect to t, we obtain the following transformed system of two equations 
for xl = x, x2 = ~, which is equivalent to the original one 

t 
/q 9 x2' Jc2 = -az2 -bXl -J[(( t -s)x(s)ds ,  b = K(O) (3.13) 

0 

This means that the auxiliary system has the form 

Yl = Y2, Y2 = --ay2 - bYl 

We take v for this system to be 

v = 2by  2 + y2 + (Yl + Y2 )2 = v(y  I ,Y2 ) 

Consequently, Vl(xl, x2) = v(yl, y2). From this and (3.13) it follows that V = V1 + V2, where 

V 2 = (a+l)~lk(s)l i x2(sl)dsl 
0 t - s  

Then, by (3.13), l~'satisfies the estimate 

±~' +'flRcs)la~ 2 ~315 x2 +316Y 2, 3[5 =-agCO)+Cl+a)'fliccs)lds, 3[6 =- -a  
0 0 

It follows that the asymptotic stability conditions have the form 3[5 < 0, 3[6 < 0. The two conditions will be satisfied 
if the rate of change of K(s) is small enough. In particular, if K(s) is constant, then the sufficient stability conditions 
obtained for (3.13) become necessary and sufficient. 

4 .  D I S S I P A T I V E  S Y S T E M S  

Consider the system of equations 

x ( t ) = F ( t , x ( t - h ) ) ,  t>tO, x ~ R  n, h>~O (4.1) 

Here F: [0, **) x / ~  ~ / ~  is a continuous function differentiable with respect to the second argument 
and such that F(t, 0) -ffi 0 and the Lipschitz condition 

IIF(t,x~)- F(t, x 2)11 ~ LIIx~ - x2  II, X i E g n (4.2) 

is satisfied, H" l[ being a norm inR n. We also assume that the partial derivative matrixf , ( t ,x)  = ~F(t,x)/-dx 
is strictly dissipative uniformly in t i> 0,x e D C / ~  (where D is a neighbourhood of the origin). The 
latter means that Ilexp(xf(t,x))lh ~< exp(--ax) for all x/> 0, t ~> 0,x ~ D for some a > 0. We denote by I1" II1 
the operator norm generated by the vector norm II- II in We have a < -supt,~3~(t, x)), t ~> 0, x e D, 
where the logarithmic norm ~ o f f  is defined by the equation 

T(f)  = lima~+o ~[111 + Afllt - I] (4.3) 

(I is the (n x n) identity matrix) [14, 15]. 
We emphasize that f should be dissipative with respect to some matrix norm ]1 " ]h generated by 

any vector norm I[" [[ in R n. In particular, iff(t, x) is negative definite uniformly in t ~ 0 and x ~ D (i.e. 
y'f(t ,y)y <~ -Cy'y for anyt  I-- 0,x ¢ D y  ~ / ~ ) ,  then it is strictly dissipative with respect to the Euclidean 
norm and ~q) ~< -C.  

We shall establish stability conditions for the trivial solution of (4.1). 
On adding and subtracting F(t, x(t)) on the right-hand side of (4.1), we conclude that the auxiliary 

system has the form 

~¢(t) = F(t,  y ( t ) )  

and we take v = IlY]I as the function v for this system. Then I"1 = Ilr(t)ll. For any norm we have [14-16] 
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d + / dtllx(Oll = Q[x(t), ~(t)] (4.4) 

Q[x(t), k(t)] = lima~4o ~[llxft) + ~c(t)ll-llx(t)ll] 

where d+/dt is the right-hand upper derivative. Replacing iin (4.4) by the right-hand side of (4.1), we 
obtain 

d+dt" Vl <~ lim/'~+° 1 [llx(t ) + zXF( t, x( t ) )ll-llx( t )ll]+llF( t, x( t ) ) - F( t, x( t - h))l (4.5) 

The limit in (4.5), which is equal to Q[x(t), F(t,  x(t))], satisfies the estimate 

QIx(t), F(t ,x( t)) l  <<- y ( f ) l l x ( t )  <~ - allx(t)U (4.6) 

Indeed, using (4.4), one can interpret Q[x(t), F(t,  x(t))] as the fight-hand upper derivative d+b~Vdt of 
I~11 because of the trajectories of the system at the point y = x(t),  i.e. 

a + Ilyl____] = Qty, F(t,y)l (4.7) 
dt  

F u r t h e r m o r e ,  

Besides, by [14--181] 

1 
F ( t , y )  = I f ( t , s y ) d a y  (4.8) 

0 

y(f )  = supyllyU -1Q(y, fy), Ilyll* 0, y • R" 

The estimate (4.6) follows from (4.7)-(419) and the convexity of the logarithmic norm, since 

d + Ilyll = Q y, f(t,sy)dsy ~ T f(t,sy)ds Ilyll ~< I~tIf(t,sy)ldsllyll ~-allyll 
dt  o 

Inequalities (4.2), (4.5), and (4.6) mean that 

d + t 
~-{ v~ <- -allx(t)ll + LIIx(t)-  x( t  - h)ll = -allx(t)ll + LII I F(s,  x(s  - h))dsll <- 

t -h  

~< L 2 ,~h IIx(s)llas-allx(t)ll 
t -2h  

It follows that 

(4.9) 

v2 = L 2: '-" ,-h + h ih llx(s)Uds] 
~, t -2h ,~ 

and d+V/dt <<- - (a  - hL2)l~(011, where V =//1 + 1/2. It has therefore been established that, under the 
assumptions made above, the trivial solution of (4.1) is uniformly asymptotically stable if a > h L  2. 

For scalar equations of the form (4.1) this stability condition actually follows from [1], where it was 
established by the Lyapunov-function method for n = 1. 

We also remark that the stability conditions for (1.1) established in Section 1 can be obtained using 
the argument of the present section, which can also be used when studying the stability of non-linear 
systems with arbitrary delay. 
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